
1
Team 6 Final Project Report

HUDware
Sanghoon Lee, EE, David Meschisen, EE, Jori M. Platt,

EE, Minwo Wang, EE

Abstract—HUDware is an augmented reality (AR) heads-up-
display (HUD) device that connects a skier to their mobile device.
HUDware uses wink detection to allow the user to manipulate the
device to view data like kinematics or messages within their ski
goggles distraction-free. It is an attachment that connects to the
skier’s existing goggles to both display data and receive input from
the user. Information generation is handled by the mobile phone
application which takes in the control signals from the wink
detector and outputs text for data values.

I. INTRODUCTION

BEING alone with nature is one of the great things about

skiing. The downside to this solitude is isolation. If a friend or
family member is trying to reach the skier, the skier will remain
blissfully unaware. Even if they were to know that a message
has been sent, they would need to then go through the trouble
of reading the message in the middle of the run.
using simple gestures.

Skiers and snowboarders commonly embrace the cold and
blistering weather to tackle difficult slopes and terrain. When
they head out, they take their cell phones. This could be for
safety, for music, or for the many features and applications that
now can add to the skiing experience. Applications for mobile
devices can now track a skier’s speed, distance traveled, and
location. Unfortunately, all this information is locked away
until the skier returns to base. Live statistics are unachievable
due to the inaccessibility of mobile devices while skiing. In
order to change a song, a skier will have to remove their glove
in the freezing temperature, dig through their coat to find their
phone, and then attempt to navigate the menu with shivering
fingers, before reversing the process and placing the phone back
into their coat pocket. If someone is trying to reach them with
their phone, it is unlikely that they will even notice. Calls and
messages ring uselessly against the vibrations and noise of the
slopes. If the skier is lucky enough to notice their phone, they
must stop their run, quickly remove their gloves, and find their
phones to respond, again exposing their fingers in unpleasantly
cold temperatures.

The successful demonstration of HUDware is a stepping
stone for AR-based technologies to become more realizable in
the future. It aims to set an example that such products can be
inexpensively fabricated and still maintain robust performance
in tough environments. In a world where smartphones are
becoming more prevalent among many people, there is a need
for such a device to seamlessly integrate within a person’s daily
schedule to keep up with notifications and events. Essentially,
HUDware shows that there exists another medium for
smartphones to interact with a user in a passive manner. The
user will not have to divest much attention to the phone while

still be able to control it using simple gestures.
There are already devices that can send a display image based

on information from a mobile device, or preset settings. These
devices however are only one directional; information is sent to
the user, but the user cannot change the type of information
sent. Heavily interactive displays for certain AR devices are
cumbersome and difficult to integrate into an active setting like
skiing. Similar systems include Google Glass and the Microsoft
HoloLens [1]. Both systems fail to be practical for a skiing
HUD due to their price and impractical nature. Google Glass
uses a touch bar and voice commands while the Microsoft
HoloLens requires hand gestures, both which would be difficult
to manage with gloves on, let alone while skiing. Vocal
commands and hand gestures are inconvenient when the user’s
voice is muffled by a scarf and their hands by gloves. In
addition to being impractical to use, AR devices are expensive
and do not lend themselves to the rigor of athletic activities. To
be integrated into the skiing, or any active and quick paced
environment, they need to be hands-free, durable, and relatively
inexpensive.

At its core, our goal for a HUD for skiing would need to be
able to take information from the user quickly and in real time,
use that information to control the device and the information,
and remain unobtrusive throughout the whole process. The
device will need to display relevant and important information,
have a reasonable battery life, and be easily integrated into the
skier’s current gear. More specifically, this device must not add
significantly more weight to the user’s helmet. It also must
withstand typical skiing conditions, which has a temperature
range of about -20 to 30 ̊C. The battery must provide enough
power to run about 4 hours, which will allow it to be feasible
for at least a half days’ worth of skiing. Sending control signals
at a minimum of 2 frames per second (FPS) allows for smooth
instantaneous updating of information on the goggles. Most
importantly, for the sake of the user’s safety, the AR projection
must not impede the user’s sight. Additional information
regarding requirements for our device is provided in Table 1.
By combining these features into a single device, we will be
able to enhance the skiing experience as well as advance
practical AR technology.

Table 1

GENERAL REQUIREMENTS
Requirement Specification Result

Lightweight attachment < 100g 260g- but the casing
does not feel heavy

Operable in reasonable
temperatures

Temperature range -20
to 30 C̊

Reasonable battery life > 4 hours 9.7 hours
Quick feedback Control signals > 2FPS 3.51 fps
Unobtrusive Unobstructed view Met

2
Team 6 Final Project Report

II. DESIGN

A. Overview

HUDware will bridge the gap between the skier and the
phone with a two-part system that displays the information from
the mobile device and user interface that allows the skier to
manage the phone. The display system begins at the phone
application which collects kinematic data, messages alerts,
phone calls, and music information. This information is
transmitted through an open source PIC microcontroller-based
board (IOIO, pronounced “yo-yo”) to a microcontroller (MCU),
namely the Arduino Micro, which drives an Organic Light
Emitting Diode (OLED) display. This display is reflected off a
transparent material to give the illusion of a heads-up-display
in the skier’s field of vision. The user can then control the
interface by winking either the left or the right eye. This is
picked up by a camera located in the center of the device above
the field of view of the skier. The other MCU, the Raspberry Pi
Zero, then processes the image to determine if the user closed
only one eye. The result of this analysis is used to generate
control signals, which are then sent back to the mobile device.

Figure 1. Block diagram of system components

Figure 1 displays the different subsystems that comprise

HUDware. Each component is color coded to the engineer
designing the subsystem. The Android application takes in
control signals and feeds text data to the IOIO device. The IOIO
handles communication between the microcontroller and the
mobile application via a wired USB connection. An Arduino
Micro drives the projector and maintains the menu states while
the Raspberry Pi Zero analyzes the images captured by the
camera. The wink detector is an image processing algorithm on
the Zero that takes the images from the camera, determines if
one eye is closed, and sends corresponding control signals to
the Micro. The projector display uses an OLED screen and a
prism-like structure to create an image of relevant information
appear in the skier’s field of view. The power system feeds into
the Zero and then to both the Micro and IOIO. By extension of
being powered by the MCU, this power system will also handle
the demands of both the projector display and the camera.
Finally, all the components shown in the casing block, the
OLED Display, Pi Camera, Zero, Micro, IOIO, and printed
circuit board (PCB), will be held in the 3D printed plastic
casing.

B. Wink Detector

The user control system is a wink detector system. This
works in conjunction with the camera subsystem to detect if the
user is closing one and only one eye as well as which eye is
closed. The camera takes a picture of both eyes which is fed to
the Zero. The MCU then crops the image to focus on the eyes,
applies a Gaussian blurring filter to reduce the effect of noise,
and applies a Gaussian adaptive threshold filter to detect dark
and light portions of the image. The threshold filter compares
each pixel to those in the surrounding region. If the pixel is
darker than the weighted average of its local neighborhood, it is
set to zero intensity, otherwise it is set to the maximum
intensity. The Zero then uses an image processing technique
called a Hough Circle Transform. This detects any circles in an
image which would correspond to an iris or pupil. Each circle
detected has defined center points and radii. If the circle center
coordinates place it on the left side of the image, this would
correspond to a right eye open, or a left wink due to mirroring.
Likewise, a circle on the right side indicates a right wink. When
only one circle is detected, the wink detector will turn on a
corresponding output pin which is sent as a control signal to the
IOIO device.

A Hough Circle Transform is a computer vision technique
that was taught in ECE 597IP Image Processing at the
University of Massachusetts. In principle, the parametric
equations x=a+Rcos(θ) and y=b+Rsin(θ) describe a circle [2].
The transform works by describing each circle in terms of
variables a and b instead of x and y and letting x and y become
constants. To detect a circle in an image, an edge detector is
used first, in this case we used a canny edge detector. The
algorithm then cycles through the image and increments the
corresponding location in the a and b coordinate map each time
it meets an edge in an x and y location. The peaks of this
coordinate map correspond to the x and y locations of the
centers of the circles with radius R. By repeating this process,
we can search for a range of radius values. By altering the
sensitivity of the edge detector and the threshold for the peaks
in the a and b coordinate map, the algorithm can be calibrated
to accurately detect pupils and irises. In addition, the wink
detector can be set to only accept one circle within a selected
pixel distance. Other calibration parameters include the
minimum and maximum radii allowed, and the amount of
blurring before the edge detector. Blurring allows the algorithm
to reduce noise at the cost of computational expense and loss of
detail.

Table 2

WINK DETECTOR REQUIREMENTS AND SPECIFICATIONS
Requirement Specification Results

Accurate Reads 90% of the
frames correctly

Reads 85% of frames
correctly in optimal
light

Quick Minimum 2 FPS 3.51 FPS
Connects to the IOIO Controls 2 binary

output pins for control
signals

Met

3
Team 6 Final Project Report

 Table 2 demonstrates the individual requirements for which
this subsystem is responsible. This system will be the control
interface for the user, so to maximize ease of use, the system
will need to be quick and accurate. The whole algorithm will
need to run in under a half a second for easy control of the
device. The speed of the program from image capture to signals
out was timed over 50 images and averaged .285 seconds or
3.51 frames per second. This is an improvement over the speed
at MDR where the time from image capture to analysis was .793
seconds, since that algorithm required saving the image to
memory and then analyzing it, while the current code analyzes
directly from the video stream. Accuracy of the system was
determined by taking a series of pictures of each configuration
(both eyes open, left wink, right wink, and both eyes closed)
and averaging the accuracy for each configuration.
Unfortunately, this turned out to be dependent on the light
conditions as the Pi Camera had difficulty in low light
situations. The binary GPIO signals were sent to the Micro
instead of the IOIO, but the wink detector still connects to the
IOIO indirectly and from there, to the phone application.
 Alternative designs for this system were considered.
Initially, we planned to use a sample image of a closed eye and
run a similarity metric using a calibration algorithm; this
however was computationally heavy and not accurate. An eye
tracking system was also considered. While this would give us
more control over the device, concerns rose over the
computational costs and thus the approach was abandoned.
Using our current system, we would be able to detect if both
eyes are closed and we could use that as an additional user
input, but that system runs the risk of detecting normal blinks
instead of control winks. If we used two frames to ensure there
were no accidental blinks, then the system would force the user
to keep their eyes closed for longer which would quickly
become dangerous. Given all these concerns, we decided to
pursue only a wink detector algorithm using the Hough Circle
Transform.
 Future work on the wink detector should have a focus on
improving accuracy and adjusting for changing light
conditions. A histogram equalization function should help
standardize the image intensities and was attempted, but it had
adverse effects with the rest of the image processing algorithms
and we had difficulty incorporating it. Other systems that may
have more success would include a Haar scaling function or an
image segmentation method. Unfortunately, we were unable to
test the final algorithm until late in the design period since it
was dependent on the final configuration of the whole system
and we were unable to flesh out these alternative methods to
compensate, but they may prove successful to future progress
on the subsystem.

C. Camera

The camera subsystem will function as the input to the wink
detector. It will be mounted within the goggles above the user’s
field of view. In this location, it will capture both user’s eyes
and send images at a fixed rate to the microcontroller.
Requirements for this subsystem include capturing both eyes,
and capturing an image within a quarter of a second. The last

requirement is necessary to achieve the two frames per second
requirement of the user interface specified in the wink detector
block.

The camera chosen is a Raspberry Pi Camera Board v2. This
has a resolution of 8 megapixels, a light weight of 3.4g with the
cable, and a small profile of 25mm x 23mm x 19mm [3]. The
camera contains a high-resolution Sony IMX219 Image sensor
[4]. This is a high-speed sensor that has a lens shading
correction function and two exposure controls to support
Binning Multiplexed Exposure HDR (BME HDR). The lens
shading correction suppresses optical unevenness. The BME
HDR is an image processing technique that synthesizes both
dark and bright aspects in the photo between short and long
exposure images. Using these two different exposures, the
camera can minimize the effects of high contrast. Table 3 below
shows the relationship between image size and frame rate as
provided by the datasheet.

Table 3

RELATIONSHIP BETWEEN IMAGE SIZE AND MAX FRAME RATE
Image Size Frame Rate Notes
3280 x 2464 30 fps
1640 x 1232 120 fps
1408 x 792 180 fps High-sensitivity mode
1280 x 720 198 fps High-sensitivity mode
960 x 540 240 fps High-sensitivity mode

Due to the proximity of the camera to the user’s face, we are

using a fisheye lens to widen the aperture to approximately 180
degrees so that we will be able to fully capture both eyes.
Figures 2 and 3 demonstrate the effectiveness of the lens. Each
picture was taken with the camera at the distance it will need to
be to fit within the goggle attachment. The fisheye lens allows
us to easily capture both eyes and fulfill our requirement.

Figure 2. Captured image without the fisheye lens

Figure 3. Captured image with the fisheye lens

D. Microcontroller

The microcontrollers will serve as the central hub between
all the other subsystems. The MCUs drive the OLED for the

4
Team 6 Final Project Report

display, run the wink detector, power the camera, and
communicate with the mobile device via the IOIO. These
devices receive serial data from the IOIO and receive images as
png files from the camera. In return, they output binary (GPI/O)
pin values to the IOIO and drive the display. The MCUs are
able to manage the different tasks through asynchronously
communicating with one another.

We are using a Raspberry Pi Zero to run the wink detection
algorithm. This is a small microcontroller, only 65mm x 30mm
x 5mm. This allows it to be easily used for a wearable device as
it is not bulky or heavy (9g). The Zero has a BCM2835
processor with a 1 GHz ARM1176 core. It has 512 MB of RAM
which will be enough to run both the wink detector and the
OLED display code [5]. Several tests were performed on the
Zero to ensure that it would meet general specifications listed
for the project, namely power consumption tests and
operational performance.

Table 4

ZERO PERFORMANCE STATISTICS
Performance Statistic Value

Power Consumption .7W (5V @ 140 mA)
Memory Usage (1 image) 9%-10% Max
Memory Usage (5 images) 12%-13% Max
Running Temperature 53 ̊C

As shown in Table 4 above, the Zero runs on low power

consumption, while utilizing less than a fifth of the memory to
run wink detection analysis. The different specifications
represent how much memory is taken to analyze a certain
number of frames (either one or five); as more frames are used
the memory usage does not increase by more than 5% from the
second row in the table. More importantly, the Zero does not
heat up considerably, maintaining about 53°C while running.
The temperature was measured using a Python script that
accessed the internal temperature sensor inside the Broadcom
processor chip; it provided reasonable accuracy after
calibration. This will be a crucial aspect in our prototype design,
since it is not desirable to have a very hot component located in
proximity to the user (in fact, our specifications list that it
cannot be more than 80°C, which it suffices).

To test the communication aspect of the microcontroller, first
a serial data communication test was performed between the
laptop terminal and the Zero. Text data was sent in both
directions between the two devices, demonstrating the
capability to communicate with the IOIO serially. However, a
different option from using the Zero for both wink detection and
OLED display was used because the Zero was unable to refresh
the OLED display to show new information at around 2 FPS.
As a result, all of the functions to power the OLED display and
communicate with the IOIO serially were moved over to the
Arduino Micro. This Micro does not have a lot of overhead (it
is only running one program at a time, as opposed to the Zero
which runs the whole Linux OS) and runs on C++, which is
faster than Python. As a result, it was able to achieve our
requirement to provide for fast OLED display refresh rates of at
least 2FPS. In addition, it received data from the Android phone

like music information, text message data, and etc. serially to
project it onto the display. This was validated by connecting the
IOIO to the Micro, which was powering the OLED display, and
visually inspecting that phone data was being printed on the
screen.

With the introduction of a new microcontroller, some
changes had to be made for communication protocols. As
previously mentioned, the IOIO talks to the Micro serially,
providing the phone data. The Micro also powers the OLED
display using hardware Serial Peripheral Interface (SPI), which
uses the dedicated SPI pins on the board to provide much faster
data rates than serial transmission. The wink detection, which
originally sent out the GPIO signals to the IOIO from the Zero,
now sends that information to the Micro, which also houses a
finite state machine to control what the user sees in his vision
and what data to send from the IOIO. The GPIO signals from
the wink detection drive into the interrupt pins on the Micro,
which asynchronously interrupt the loop it is running to change
the menu display and receive different kinds of information
from the IOIO. A more precise explanation of the
communication signals is shown in the block diagram (Figure
1) and denoted later in this section. The finite state machine is
shown in Figure 4.

Figure 4. Finite state machine for control menu housed in the Micro. Blue
signifies right winks, red signifies left winks

When the user wears the goggles, it will begin by displaying

the top level menu, beginning with GPS. If the user would like
to access the GPS, he winks with his left eye, which will bring
him to a submenu of the GPS showing Longitude, Latitude,
Speed data. To exit the submenu and return to the top level, the
user winks left again (hence the bidirectional red arrow between
the top level and the sub-functions). To traverse laterally
through the menu, the user winks with his right eye. So from
the GPS top level menu the user will go to the Text Message
top level menu. The user can once again enter the Text Message
menu through a left wink, which will first show information
about the person who sent the message and what the message
contents were. If there are multiple sub-functions within a
menu, the user can right wink to traverse (it is a loop so at the
end it will revert back to the first sub-function). Again, the user
can exit at any subfunction to the top level menu by winking
left. The top level menu is also in a loop, going from the last
option to the first option (GPS). This menu can be scalable, as
shown in Figure 4 that all that needs to be implemented are the
sub-functions and then the top level menu option itself in the
code. Depending on the state the Micro is in, it will request
different data by signaling with two different GPIO pins (one

5
Team 6 Final Project Report

for each sub-function) to the IOIO and will receive that
information through five other GPIO pins (one for each top
level menu) from the IOIO. Our PCB has a maximum of three
sub-function pins and six data pins; this can be further scaled
for more different options and sub-functions by soldering more
connections between the Micro and the IOIO.

Finally, we tested for whole product functionality in different
environments, such as putting it in a refrigerator for 2.5 hours
and running the code outside where it was at least 25°C. In
Table 5 we list specifications required for our product.

Table 5
MICROCONTROLLER REQUIREMENTS

Requirement Specification Results
Maintain
communication
between Android
application and OLED
(support Wink Detector
and OLED)

Constant link of
sending GPIO signals
and power OLED
display

Met through running
entire system for 4
hours without
interruption

Drive Pi Camera Minimum 2 FPS Met
Does not overheat Temperature remains

less than 80 ̊C
Zero: 53 ̊C
Micro: 23 ̊C

Works within
reasonable temperature

Operating range -20 C̊
to 30 C̊

Met by putting both
microcontrollers in
refrigerator for ~2.5
hours

Low power
consumption

<1W Zero: .7W (5V @
140mA)
Micro: .135W (5V @
27mA)

Memory constrained <50% of RAM Zero: ~18-20% Max
for infinitely running
code

Size <80mm x 80mm x
10mm

Zero: 66mm x 30.5mm
x 5mm
Micro: 48mm x 18mm
x 5mm

The requirements for this subsystem are shown above in

Table 5 alongside test results. As shown in the table, the
temperature requirements, memory constraints, and power
consumptions have all been met with both the Micro and the
Zero. More importantly, it is able to run the system and provide
end-to-end feedback between namely the phone, wink
detection, and the OLED display through asynchronous
interaction between these systems.

E. Mobile Phone Application

The mobile phone application collects data from the phone
and sends information through the MCU to display. It will
receive input commands from the IOIO to adjust the
information it is displaying or to control the phone. We used
Android Studio to write the phone application for Android
devices. The application is currently designed for the Huaiwei
Honor 5x smartphone, which uses Google Android 5.1 OS [6].
The requirements of this subsystem are shown in Table 6.

Table 6

PHONE APPLICATION REQUIREMENTS
Requirement

User friendly interface
Gathers information from phone sensors
Sends messages and phone number data
Able to gather GPS data and calculate the speed
Allows IOIO to manipulate the phone
Able to manipulate music

The phone application can currently turn music on and off

from I/O pin input, displays information from the phone
sensors, and is accessible to users as seen in Figure 5.

Figure 5. Main menu layout for testing (left), HUDware working module
(right)

The layouts for the application have already been completed.

We have implemented music, statistical data extraction, and
part of the message display functionalities.

The music function allows the user to listen to songs and
change the song sequence via I/O pins. First, we needed to add
“MusicService” in “AndroidManifest.xml” which guarantees
the application permissions it needs to do system level methods.
We imported .mp3 files into the resource directory, allowing us
to call music within the application. In the Java class, we
created a media player to recall those songs. This media player
can be controlled through GPI/O pins.

The sensor layout seen above shows the phone’s sensor sets,
which we are using to display information about our
surroundings. Using these sensors, we are able to detect light
intensity, gravity, acceleration, and orientation. With GPS data
and calculations, we expect to be able to determine speed as
well. Finally, all these kinds of data have been extracted and
send out to the MCU through IOIO serial data communication.

The message display function has been completed. We use
an Android SMS Message API to help the application show
messages when they arrive. “Broadcast Receiver” has been
implemented for monitoring the status of Message service.
When the message comes in, the sender’s phone number and
message content will be reserved and then sent out to the MCU
through IOIO serial data communication. At the beginning, we
tested message function on virtual device. After it was
completed, we moved to the real device with an SIM card.

6
Team 6 Final Project Report

The GPS function has been implemented by using Google-
Play-Service. It will return the accurate longitude and latitude
data once the phone is connected to the Internet and it is under
GPS function. We are able to get new longitude and latitude by
configuring time intervals and minimum distance of updating
the data. In this case, updated longitude and latitude data can be
used to calculate the distance by using Haversine Formula, as
shown below in figure 6. The speed can then be calculated using
distance over minimum time interval.

Figure 6. Haversine Formula

Figure 7 below shows the test circuit used for the application.

This test circuit includes the IOIO device which will be
described in more detail later. An external control circuit was
used to simulate an I/O pin turning on and off. Using this
system, we could control the phone via external switches.

Figure 7. Phone Application, IOIO-OTG Board, and External Control
Circuit

F. IOIO-OTG

The IOIO-OTG board connects the mobile phone to the
MCU, namely the Micro. Using a wired USB connection, this
device allows us to communicate at a fast rate. Usually with a
mobile device, the phone is default set to slave in the
master/slave paradigm. This device allows us to swap back and
forth to fit the needs of the project. This subsystem needs to
provide stable serial data transmission, read GPIO and analog
inputs, and write GPIO outputs.

The Android IOIO-OTG board is a development board that
uses a PIC microcontroller [7]. It provides two pairs of serial

data communication, 46 GPIO pins, analog input, SPI, and I2C
interfaces to handle external hardware. This provides enough
functionality to handle all the requirements needed from this
subsystem.

Table 6
IOIO PROTOCOLS AND SPEED

Protocol Throughpu
t

One-way
Latency

Stability

Open Accessory 600 kB/S 1 ms High
Android Debugging
Bridge

300 kB/S 4 ms Low

Table 6 shows the different speeds for the two protocols

available on the IOIO. Clearly, the Android Open Accessory
(AOA) protocol is more attractive. In addition to the speed and
stability, with AOA we do not need to set the phone in USB
debugging mode as we do for the Android Debugging Bridge
(ADB). ADB is commonly used for downloading Android code
from the desktop. We have implemented the IOIO transmitter
by importing the IOIO API and the Utility library. The
transmitter can control each GPIO pin and set them to either
high or low from the phone application. It sends serial data at
common baud rates, e.g. 9600, 19200, 38400, and 115200.

IOIO sends out the serial data through UART. For the input,
we define two kinds of GPIO pins: state pins and control pin.
State pins decide the Phone’s functionality, such as Music,
GPS, Message, and Sensor Data. Each function corresponds to
one specific pin. Apart from that, we have control pin to enter
the function or exit the function. For example, if user wants to
enter the message function and see message information on the
display. Message function’s state pin will be on first, and then
control pin will be on then to enter the function and message
content will be presented on the OLED display.

Alternative approaches to the IOIO device were considered
for communicating between the application and the
microcontroller. These options are shown in Table 7 with their
respective bandwidth, range, and complexity. Bluetooth offers
the lowest bandwidth but is straightforward to implement. Wi-
Fi has the highest bandwidth, but would be difficult to
implement due to protocols. Both Wi-Fi’s and Bluetooth’s data
transmission can be unstable for dynamic situations like skiing.
Since wireless connectivity was not necessary, the IOIO device
proved to be the best option due to its stability and low
complexity.

Table 7
COMMUNICATION LINK DESIGN ALTERNATIVES

Communication Bandwidt
h

Range Complexity

Bluetooth (v4.0) 800 kB/s 30 ft Pairing Devices
Wi-Fi (802.11n) 11 MB/s 300 ft Accessing Internet
IOIO-OTG 5 MB/s Wired Configuring Board

G. Display

The display for this device will be generated by an organic
light emitting diode (OLED) display that reflects off a
transparent material. An OLED works by having a series of thin
organic films between two conductors. By applying current,

7
Team 6 Final Project Report

light is emitted from the device [8]. The device we are using is
driven by a SSD1351 chip. To provide necessary setup and
functionality for the display, we are using a library from Github,
py-guagette_master_2 [9]. Using this library, we can display
png images as well as text and ASCII characters.

Figure 8. Pepper’s Ghost Diagram

The AR display works on a principle called Pepper’s Ghost

shown in Figure 8 above [10]. This effect uses two light
sources, in our case the natural light of the environment and the
light from the OLED [11]. By placing a film in the green plane,
some of the light from the OLED will appear to be directly in
front of the user. This allows us to hide the OLED on the side
of the goggles outside of the user’s field of view and still create
a transparent display. For this subsystem, we are using a sheet
of LEXAN clear acrylic. The optimal angle for this sheet, or
angle where the user sees total reflection, is 42.2 ̊from the red
plane [12].

 Figure 9. Virtual Image

For purposes of focusing the image for a general user, we

added a 10cm focal length BiConvex lens in the optical path.
This allows us to achieve a focused image within the user’s
vision. A normal human eye cannot perceive an image that is
within 25cm of the eye, we needed to create a virtual image that
appears to be coming from a distance greater than 25cm. With
our 10cm focal length lens, we are able to achieve an image that
appears to come from about 40cm away which is sufficient to
meet the 25cm criteria.

Table 8
DISPLAY REQUIREMENTS

Requirement Specification
Focused and Legible Display
Brightness Minimum 90 nits
Operable at reasonable temperature -20 C̊ – 30 C̊
Low power consumption <1W

The requirements for this subsystem are shown above in

Table 8. This display needs to be bright enough to be legible
while skiing in the middle of the day and needs to be able to
work under cold temperatures. Currently we are able to meet
the specification on brightness although just barely with 91 nits
as measured from a light meter.

As previously mentioned, between MDR and FDR a switch
was made from a Raspberry Pi Zero running the OLED display,
to an Arduino Micro. This change was done in order to increase
the refresh rate of the OLED. With the Zero, we were getting
refresh rate of a frame every 3 seconds (.333FPS), which does
not make sense to have a refresh rate so low that it does not
allow for fast enough display of the incoming data. With the
Micro, we are able to achieve a much faster refresh rate of
roughly at least 2FPS.

A few different design alternatives were considered for this
display. Texas Instruments has a Pico projector chipset that
would have fit the requirements of the projector well, but the
chipset itself was difficult to assemble due to their format as
ball grid arrays. A transparent OLED was also considered, as it
would provide the light required without needing a reflective
film, but these proved impossible to procure. Given the
complexity and ease of manipulation, an opaque OLED was
chosen for the display.

H. Power System

The power system will support the HUDware device for its
outdoor setting. This system will need to supply power to the
IOIO and MCU, and by extension, the camera and OLED. This
subsystem will supply enough power and energy to run the
device for four hours. Table 9 shows the power drain for each
system.

Table 9
POWER BUDGET

Device Current Draw
Zero 140mA
Micro 27mA
OLED 0.4mA
IOIO 60mA
Total 227mA

We decided to use an external phone battery to power the

device. This provides 2200mAh which will prove more than
enough to reach our goal of four hours of battery life [13]. It is
worth noting that the battery is not located within the casing as
previously intended, but is instead attached by a USB cable and
designed to rest in the pocket with the user’s phone.

8
Team 6 Final Project Report

III. PROJECT MANAGEMENT

Table 10
MDR GOALS

Goal Specification Achieved
Projector Display Assembled Prototype Prism Constructed Yes
 OLED Display Setup Yes
Application Layout Partial Functionality Yes
Wink Detector Wink Detection Algorithm Yes
 Moved into microcontroller Yes
MCU communication setup Serial to MCU Yes
 Serial from MCU Yes

Table 10 lists the goals our team aimed to accomplish by the

midway design review presentation date. Each subsystem had
separate objectives for the MDR presentation. The projector
display needed to have a basic system in place so that an image
was visible to the user. This was not intended to be a final
configuration so much as a proof of concept. To this end, a
makeshift prototype was created that showed the OLED display
image across the field of view of the user. Further work in this
subsystem includes optimizing reflection, finalizing OLED
placement, and converting text data into a display that can be
shown to the user. While there is plenty of work to be done in
this area, the display has been created to the point specified at
the preliminary design review.

The mobile phone application subsystem has all required
functions and it is integrated with other subsystems. At the time
of the presentation, it would take in sensor data, GPS data,
speed data, and message content from the phone itself and
display the information on the OLED Display. Sensor data is
extracted from phone’s own sensors. Message information
includes both sender’s phone number and the content of
message. Speed data is calculated from the Haversine formula
based on the time interval and the changed distance. Apart from
that, Music function is able to skip the song and restart back to
the first song. It is controlled through microcontroller’s control
signals.

There were two milestones in the wink detector subsystem.
The first was a functional algorithm that would detect if one eye
was closed in a picture of the user’s face. The second portion of
this subsystem was moving it from a computer into the Zero.
Currently, both milestones have been reached and there is a
functional wink detector inside of the MCU. In order to
complete these tasks, the wink detector code first was designed
on a computer. For ease of use, this was done in MATLAB. An
equivalent program was developed in Python so that the
microcontroller would able to run the code. Finally, this had to
be imported into the microcontroller which involved calibration
and importing the correct libraries. Like the mobile phone
application and the IOIO device, the camera sensor subsystem
falls closely in line with the functionality of the wink detector.
Although no deliverables were specified, the camera is
currently able to take a picture of both eyes from a distance that
would fit comfortably within the goggles. Further work in both
subsystems would include calibrating the wink detector,
improving the speed of the whole algorithm, testing the system
to ensure requirements have been met, and permanently fixing
the camera to the prototype attachment.

Since MDR, the wink detector was moved from the
Raspberry Pi B+ to the Zero. In addition, filters and calibration
were added to improve accuracy of the live stream. The overall
latency of the algorithm was drastically reduced thanks to a
change in the handling of the video stream.

While there are several components to the microcontroller
subsystem, for the MDR presentation date, we specified that we
would have communication to and from the MCU. As
promised, we sent serial data from the microcontroller to a
desktop computer and from the computer to the
microcontroller, just using two different MCUs. This past
semester, the Micro became the dedicated MCU to drive the
OLED display, while the Zero ran the wink detection algorithm.
Otherwise, the overall system is still able to send information
bi-directionally; it is just through a slightly different way for the
reasons explained earlier in the MCU section of the report.

In the past semester, two new subsystems were incorporated
into the overall design; the power system and the casing. The
power system is driven by an external phone battery which rests
outside of the main casing. This supplies enough energy to
power the system for 9.69 hours. The power is connected
directly to the Zero which in turn supplies it to the IOIO, phone,
Micro, OLED display, and the Pi Camera. The casing was
designed in a 3D modeling software and printed out in two
parts. Each part was designed to hold the three components of
the OLED display subsystem as well as the PCB. After printing,
the pi camera was attached using sheets of plastic, and a foam
cushion added to line the perimeter of the headset. Tabs on both
the top and bottom halves allowed the casing to be connected
with screws and nuts.

Since we have complex system, including one Arduino
Micro, one Raspberry Pi Zero, IOIO Communication Board,
and OLED display, and all these things have to be fitted into the
Casing prototype, which has limited space. We decided to
design our Printed Circuit Board (PCB) with Altium Circuit
Maker to reduce the complexity of wiring. The PCB was sent
to Advanced Circuits for fabrication. When the board is
received, it was soldered with male and female header pins.
After finishing soldering, ground continuity was checked
before plugging in the components. The PCB was then placed
in the goggles.

The team worked well together. For the first semester, most
of the work was done with individual subsystems, requiring
each member to work independently. While the bulk of the
work was done individually, when a team member had
difficulty achieving a goal, other team members stepped in to
assist. Most commonly, this duty fell to Lee, whose subsystem
impacted everyone’s, putting him in the unique position of
being involved slightly in every subsystem. The second
semester work required each of the subsystems to join together.
This required significantly more communication, but we met
this challenge head on. The team has been able to communicate
with each other through both a group messaging platform as
well as weekly meetings. The group meets once a week as a
team to work on current action items, and again later in the
week to discuss progress and goals with our faculty advisor.

9
Team 6 Final Project Report

This allowed us to achieve our goals for the project and resulted
in a functioning prototype.

Figure 10: Schedule for the first semester

Figure 10 demonstrates the goals that we have set for the fall

semester, with the deadline of the midway design review. This
chart was created early in the project and understandably
represents somewhat different goals than what we decided to
pursue. For instance, the original design includes Bluetooth
connectivity, a feature we decided to scrap in favor of a wired
USB Connection. Some of the work we anticipated being able
to achieve was not accomplished, such as scheduling on the
microcontroller and any work on the power system. These were
conscious decisions aided by the advice of our evaluators to
focus our attention on more important priorities.

Figure 11: Revised schedule for second semester

Figure 11 is the proposed schedule for the second semester.

This aimed to have all tasks completed by CDR. Unfortunately,
this proved erroneously optimistic. While a prototype was
developed by CDR, it has been drastically reworked since that
presentation to improve ergonomics, display quality, and
control accuracy. By FDR and Demo Day, all tasks were
completed, all subsystems combined, and a functioning
HUDware was displayed.

IV. CONCLUSION

HUDware has been completed and will function as we
planned at the beginning of the project. All the various
subsystems have been combined and communicate together to
form a cohesive heads-up-display. That being said, there is
room for improvement in many of the subsystems to improve
clarity, ease of use, and quality increases. In addition to simply
improving the quality of HUDware, we as a group would like
to encourage future work on the project to include finding new
applications to a portable display. We selected a skiing
application due to personal familiarity with the sport, but we
would love to see another group take this project in a new
direction.

ACKNOWLEDGMENT

We would like to acknowledge the assistance of several
members of the University of Massachusetts faculty. Professor
Parente assisted us in the direction of the wink detector
algorithm. Professor Holcomb aided with the microcontroller
section. Professor Wolf provided much needed direction for the
project as a whole given his experience in working with another
Senior Design Project group that had similar ambitions as we
have. In addition to these professors, we would like to thank
John D’Errico of Eastman Chemical Company who provided us
with a sample laminate for the projector medium and Bruce
Platt for the suggestion of the weatherproofing adhesive for the
cushion on the casing.

10
Team 6 Final Project Report

REFERENCES
[1] “Microsoft HoloLens: Mixed Reality Blends Holograms with the Real

World,” Feb. 29, 2016. [Online]. Available:
https://www.youtube.com/watch?v=Ic_M6WoRZ7k. [Accessed: Dec.
13, 2016].

[2] H. Rhody, “Lecture 10: Hough Circle Transform,” Rochester Institute of
Technology, 2005.

[3] “Raspberry Pi Camera Board v2 – 8 Megapixels,” adafruit.com,
[Online]. Available: https://www.adafruit.com/products/3099.
[Accessed: Dec.13, 2016].

[4] “IMX219PQ,” sony-semicon.co, [Online]. Available: http://www.sony-
semicon.co.jp/products_en/new_pro/april_2014/imx219_e.html.
[Accessed: Dec. 12, 2016].

[5] "Raspberry Pi Zero - Raspberry Pi". Raspberry Pi. N.p., 2016. Web.
[Accessed: 4 Oct. 2016].

[6] A. Dobie, “Honor 5X Specs,” androidcentral.com, Jan. 6, 2016.
[Online]. Available: http://www.androidcentral.com/honor-5x-specs.
[Accessed: Dec. 12, 2016].

[7] Ytai. “IOIO Documentation,” github.com, Oct. 14, 2016 [Online].
Available: https://github.com/ytai/ioio/wiki. [Accessed: Dec. 12, 2016].

[8] “OLED Introduction and Basic OLED Information,” oled-info.com,
[Online]. Available: http://www.oled-info.com/introduction. [Accessed:
Dec. 8, 2016].

[9] Guyc, “Py-Gaugette,” github.com, Nov. 5, 2016. [Online]. Available:
https://github.com/guyc/py-gaugette. [Accessed: Dec. 8, 2016].

[10] “Pepper’s Ghost,” wikipedia.com, [Online]. Available:
https://en.wikipedia.org/wiki/Pepper's_ghost. [Accessed: Nov. 12, 2016]

[11] B. Costa, “Explaining the Pepper’s Ghost Illusion with Ray Optics,” Jan.
11, 2016. comsol.com, [Online]. Available:
https://www.comsol.com/blogs/explaining-the-peppers-ghost-illusion-
with-ray-optics/. [Accessed: Nov 20, 2016]

[12] “Optical & Transmission Characteristics,” plexiglas.com, 2000.
[Online]. Available:
http://www.plexiglas.com/export/sites/plexiglas/.content/medias/downlo
ads/sheet-docs/plexiglas-optical-and-transmission-characteristics.pdf.
[Accessed: Dec. 13, 2016].

[13] “Power Pack,” southerntelecom.com, [Online]. Available:
http://www.southerntelecom.com/polariodsupport/downloads/PPP2255.
pdf. [Accessed: Feb. 28, 2017].

