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Abstract—HUDware is an augmented reality (AR) heads-up-
display (HUD) device that connects a skier to their mobile device. 
HUDware uses wink detection to allow the user to manipulate the 
device to view data like kinematics or messages within their ski 
goggles distraction-free. It is an attachment that connects to the 
skier’s existing goggles to both display data and receive input from 
the user. Information generation is handled by the mobile phone 
application which takes in the control signals from the wink 
detector and outputs text for data values.  
 

I. INTRODUCTION 

BEING alone with nature is one of the great things about 

skiing. The downside to this solitude is isolation. If a friend or 
family member is trying to reach the skier, the skier will remain 
blissfully unaware. Even if they were to know that a message 
has been sent, they would need to then go through the trouble 
of reading the message in the middle of the run. 
using simple gestures. 

Skiers and snowboarders commonly embrace the cold and 
blistering weather to tackle difficult slopes and terrain. When 
they head out, they take their cell phones. This could be for 
safety, for music, or for the many features and applications that 
now can add to the skiing experience. Applications for mobile 
devices can now track a skier’s speed, distance traveled, and 
location. Unfortunately, all this information is locked away 
until the skier returns to base. Live statistics are unachievable 
due to the inaccessibility of mobile devices while skiing. In 
order to change a song, a skier will have to remove their glove 
in the freezing temperature, dig through their coat to find their 
phone, and then attempt to navigate the menu with shivering 
fingers, before reversing the process and placing the phone back 
into their coat pocket. If someone is trying to reach them with 
their phone, it is unlikely that they will even notice. Calls and 
messages ring uselessly against the vibrations and noise of the 
slopes. If the skier is lucky enough to notice their phone, they 
must stop their run, quickly remove their gloves, and find their 
phones to respond, again exposing their fingers in unpleasantly 
cold temperatures. 

The successful demonstration of HUDware is a stepping 
stone for AR-based technologies to become more realizable in 
the future. It aims to set an example that such products can be 
inexpensively fabricated and still maintain robust performance 
in tough environments. In a world where smartphones are 
becoming more prevalent among many people, there is a need 
for such a device to seamlessly integrate within a person’s daily 
schedule to keep up with notifications and events. Essentially, 
HUDware shows that there exists another medium for 
smartphones to interact with a user in a passive manner. The 
user will not have to divest much attention to the phone while 

still be able to control it using simple gestures. 
There are already devices that can send a display image based 

on information from a mobile device, or preset settings. These 
devices however are only one directional; information is sent to 
the user, but the user cannot change the type of information 
sent. Heavily interactive displays for certain AR devices are 
cumbersome and difficult to integrate into an active setting like 
skiing. Similar systems include Google Glass and the Microsoft 
HoloLens [1]. Both systems fail to be practical for a skiing 
HUD due to their price and impractical nature. Google Glass 
uses a touch bar and voice commands while the Microsoft 
HoloLens requires hand gestures, both which would be difficult 
to manage with gloves on, let alone while skiing. Vocal 
commands and hand gestures are inconvenient when the user’s 
voice is muffled by a scarf and their hands by gloves. In 
addition to being impractical to use, AR devices are expensive 
and do not lend themselves to the rigor of athletic activities. To 
be integrated into the skiing, or any active and quick paced 
environment, they need to be hands-free, durable, and relatively 
inexpensive. 

At its core, our goal for a HUD for skiing would need to be 
able to take information from the user quickly and in real time, 
use that information to control the device and the information, 
and remain unobtrusive throughout the whole process. The 
device will need to display relevant and important information, 
have a reasonable battery life, and be easily integrated into the 
skier’s current gear. More specifically, this device must not add 
significantly more weight to the user’s helmet. It also must 
withstand typical skiing conditions, which has a temperature 
range of about -20 to 30 ̊C. The battery must provide enough 
power to run about 4 hours, which will allow it to be feasible 
for at least a half days’ worth of skiing. Sending control signals 
at a minimum of 2 frames per second (FPS) allows for smooth 
instantaneous updating of information on the goggles. Most 
importantly, for the sake of the user’s safety, the AR projection 
must not impede the user’s sight. Additional information 
regarding requirements for our device is provided in Table 1. 
By combining these features into a single device, we will be 
able to enhance the skiing experience as well as advance 
practical AR technology. 

 
Table 1 

GENERAL REQUIREMENTS 
Requirement Specification Result 

Lightweight attachment  < 100g 260g- but the casing 
does not feel heavy 

Operable in reasonable 
temperatures 

Temperature range -20 
to 30 C̊ 

 

Reasonable battery life > 4 hours 9.7 hours 
Quick feedback Control signals > 2FPS 3.51 fps 
Unobtrusive  Unobstructed view Met 
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II. DESIGN 

A. Overview 

HUDware will bridge the gap between the skier and the 
phone with a two-part system that displays the information from 
the mobile device and user interface that allows the skier to 
manage the phone. The display system begins at the phone 
application which collects kinematic data, messages alerts, 
phone calls, and music information. This information is 
transmitted through an open source PIC microcontroller-based 
board (IOIO, pronounced “yo-yo”) to a microcontroller (MCU), 
namely the Arduino Micro, which drives an Organic Light 
Emitting Diode (OLED) display. This display is reflected off a 
transparent material to give the illusion of a heads-up-display 
in the skier’s field of vision. The user can then control the 
interface by winking either the left or the right eye. This is 
picked up by a camera located in the center of the device above 
the field of view of the skier. The other MCU, the Raspberry Pi 
Zero, then processes the image to determine if the user closed 
only one eye. The result of this analysis is used to generate 
control signals, which are then sent back to the mobile device. 

 

 
Figure 1. Block diagram of system components 

 
Figure 1 displays the different subsystems that comprise 

HUDware. Each component is color coded to the engineer 
designing the subsystem. The Android application takes in 
control signals and feeds text data to the IOIO device. The IOIO 
handles communication between the microcontroller and the 
mobile application via a wired USB connection. An Arduino 
Micro drives the projector and maintains the menu states while 
the Raspberry Pi Zero analyzes the images captured by the 
camera. The wink detector is an image processing algorithm on 
the Zero that takes the images from the camera, determines if 
one eye is closed, and sends corresponding control signals to 
the Micro. The projector display uses an OLED screen and a 
prism-like structure to create an image of relevant information 
appear in the skier’s field of view. The power system feeds into 
the Zero and then to both the Micro and IOIO. By extension of 
being powered by the MCU, this power system will also handle 
the demands of both the projector display and the camera. 
Finally, all the components shown in the casing block, the 
OLED Display, Pi Camera, Zero, Micro, IOIO, and printed 
circuit board (PCB), will be held in the 3D printed plastic 
casing. 

B. Wink Detector 

The user control system is a wink detector system. This 
works in conjunction with the camera subsystem to detect if the 
user is closing one and only one eye as well as which eye is 
closed. The camera takes a picture of both eyes which is fed to 
the Zero. The MCU then crops the image to focus on the eyes, 
applies a Gaussian blurring filter to reduce the effect of noise, 
and applies a Gaussian adaptive threshold filter to detect dark 
and light portions of the image. The threshold filter compares 
each pixel to those in the surrounding region. If the pixel is 
darker than the weighted average of its local neighborhood, it is 
set to zero intensity, otherwise it is set to the maximum 
intensity. The Zero then uses an image processing technique 
called a Hough Circle Transform. This detects any circles in an 
image which would correspond to an iris or pupil. Each circle 
detected has defined center points and radii. If the circle center 
coordinates place it on the left side of the image, this would 
correspond to a right eye open, or a left wink due to mirroring. 
Likewise, a circle on the right side indicates a right wink. When 
only one circle is detected, the wink detector will turn on a 
corresponding output pin which is sent as a control signal to the 
IOIO device.  

A Hough Circle Transform is a computer vision technique 
that was taught in ECE 597IP Image Processing at the 
University of Massachusetts. In principle, the parametric 
equations x=a+Rcos(θ) and y=b+Rsin(θ) describe a circle [2]. 
The transform works by describing each circle in terms of 
variables a and b instead of x and y and letting x and y become 
constants. To detect a circle in an image, an edge detector is 
used first, in this case we used a canny edge detector. The 
algorithm then cycles through the image and increments the 
corresponding location in the a and b coordinate map each time 
it meets an edge in an x and y location. The peaks of this 
coordinate map correspond to the x and y locations of the 
centers of the circles with radius R. By repeating this process, 
we can search for a range of radius values. By altering the 
sensitivity of the edge detector and the threshold for the peaks 
in the a and b coordinate map, the algorithm can be calibrated 
to accurately detect pupils and irises. In addition, the wink 
detector can be set to only accept one circle within a selected 
pixel distance. Other calibration parameters include the 
minimum and maximum radii allowed, and the amount of 
blurring before the edge detector. Blurring allows the algorithm 
to reduce noise at the cost of computational expense and loss of 
detail.  

 
Table 2 

WINK DETECTOR REQUIREMENTS AND SPECIFICATIONS 
Requirement Specification Results 

Accurate Reads 90% of the 
frames correctly 

Reads 85% of frames 
correctly in optimal 
light 

Quick Minimum 2 FPS 3.51 FPS 
Connects to the IOIO Controls 2 binary 

output pins for control 
signals 

Met 
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   Table 2 demonstrates the individual requirements for which 
this subsystem is responsible. This system will be the control 
interface for the user, so to maximize ease of use, the system 
will need to be quick and accurate. The whole algorithm will 
need to run in under a half a second for easy control of the 
device. The speed of the program from image capture to signals 
out was timed over 50 images and averaged .285 seconds or 
3.51 frames per second. This is an improvement over the speed 
at MDR where the time from image capture to analysis was .793 
seconds, since that algorithm required saving the image to 
memory and then analyzing it, while the current code analyzes 
directly from the video stream. Accuracy of the system was 
determined by taking a series of pictures of each configuration 
(both eyes open, left wink, right wink, and both eyes closed) 
and averaging the accuracy for each configuration. 
Unfortunately, this turned out to be dependent on the light 
conditions as the Pi Camera had difficulty in low light 
situations. The binary GPIO signals were sent to the Micro 
instead of the IOIO, but the wink detector still connects to the 
IOIO indirectly and from there, to the phone application. 
        Alternative designs for this system were considered. 
Initially, we planned to use a sample image of a closed eye and 
run a similarity metric using a calibration algorithm; this 
however was computationally heavy and not accurate. An eye 
tracking system was also considered. While this would give us 
more control over the device, concerns rose over the 
computational costs and thus the approach was abandoned. 
Using our current system, we would be able to detect if both 
eyes are closed and we could use that as an additional user 
input, but that system runs the risk of detecting normal blinks 
instead of control winks. If we used two frames to ensure there 
were no accidental blinks, then the system would force the user 
to keep their eyes closed for longer which would quickly 
become dangerous. Given all these concerns, we decided to 
pursue only a wink detector algorithm using the Hough Circle 
Transform. 
   Future work on the wink detector should have a focus on 
improving accuracy and adjusting for changing light 
conditions. A histogram equalization function should help 
standardize the image intensities and was attempted, but it had 
adverse effects with the rest of the image processing algorithms 
and we had difficulty incorporating it. Other systems that may 
have more success would include a Haar scaling function or an 
image segmentation method. Unfortunately, we were unable to 
test the final algorithm until late in the design period since it 
was dependent on the final configuration of the whole system 
and we were unable to flesh out these alternative methods to 
compensate, but they may prove successful to future progress 
on the subsystem. 

C. Camera 

The camera subsystem will function as the input to the wink 
detector. It will be mounted within the goggles above the user’s 
field of view. In this location, it will capture both user’s eyes 
and send images at a fixed rate to the microcontroller. 
Requirements for this subsystem include capturing both eyes, 
and capturing an image within a quarter of a second. The last 

requirement is necessary to achieve the two frames per second 
requirement of the user interface specified in the wink detector 
block. 

The camera chosen is a Raspberry Pi Camera Board v2. This 
has a resolution of 8 megapixels, a light weight of 3.4g with the 
cable, and a small profile of 25mm x 23mm x 19mm [3]. The 
camera contains a high-resolution Sony IMX219 Image sensor 
[4]. This is a high-speed sensor that has a lens shading 
correction function and two exposure controls to support 
Binning Multiplexed Exposure HDR (BME HDR). The lens 
shading correction suppresses optical unevenness. The BME 
HDR is an image processing technique that synthesizes both 
dark and bright aspects in the photo between short and long 
exposure images. Using these two different exposures, the 
camera can minimize the effects of high contrast. Table 3 below 
shows the relationship between image size and frame rate as 
provided by the datasheet.  

 
Table 3 

RELATIONSHIP BETWEEN IMAGE SIZE AND MAX FRAME RATE 
Image Size Frame Rate Notes 
3280 x 2464 30 fps  
1640 x 1232 120 fps  
1408 x 792 180 fps High-sensitivity mode 
1280 x 720 198 fps High-sensitivity mode 
960 x 540 240 fps High-sensitivity mode 

 
Due to the proximity of the camera to the user’s face, we are 

using a fisheye lens to widen the aperture to approximately 180 
degrees so that we will be able to fully capture both eyes. 
Figures 2 and 3 demonstrate the effectiveness of the lens. Each 
picture was taken with the camera at the distance it will need to 
be to fit within the goggle attachment. The fisheye lens allows 
us to easily capture both eyes and fulfill our requirement. 

 

 
Figure 2. Captured image without the fisheye lens 

 

 
Figure 3. Captured image with the fisheye lens 

 

D. Microcontroller 

The microcontrollers will serve as the central hub between 
all the other subsystems. The MCUs drive the OLED for the 
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display, run the wink detector, power the camera, and 
communicate with the mobile device via the IOIO. These 
devices receive serial data from the IOIO and receive images as 
png files from the camera. In return, they output binary (GPI/O) 
pin values to the IOIO and drive the display. The MCUs are 
able to manage the different tasks through asynchronously 
communicating with one another. 

We are using a Raspberry Pi Zero to run the wink detection 
algorithm. This is a small microcontroller, only 65mm x 30mm 
x 5mm. This allows it to be easily used for a wearable device as 
it is not bulky or heavy (9g). The Zero has a BCM2835 
processor with a 1 GHz ARM1176 core. It has 512 MB of RAM 
which will be enough to run both the wink detector and the 
OLED display code [5]. Several tests were performed on the 
Zero to ensure that it would meet general specifications listed 
for the project, namely power consumption tests and 
operational performance.  

 
Table 4 

ZERO PERFORMANCE STATISTICS 
Performance Statistic Value 

Power Consumption .7W (5V @ 140 mA) 
Memory Usage (1 image) 9%-10% Max 
Memory Usage (5 images) 12%-13% Max 
Running Temperature 53 ̊C 

 
As shown in Table 4 above, the Zero runs on low power 

consumption, while utilizing less than a fifth of the memory to 
run wink detection analysis. The different specifications 
represent how much memory is taken to analyze a certain 
number of frames (either one or five); as more frames are used 
the memory usage does not increase by more than 5% from the 
second row in the table. More importantly, the Zero does not 
heat up considerably, maintaining about 53°C while running. 
The temperature was measured using a Python script that 
accessed the internal temperature sensor inside the Broadcom 
processor chip; it provided reasonable accuracy after 
calibration. This will be a crucial aspect in our prototype design, 
since it is not desirable to have a very hot component located in 
proximity to the user (in fact, our specifications list that it 
cannot be more than 80°C, which it suffices). 

To test the communication aspect of the microcontroller, first 
a serial data communication test was performed between the 
laptop terminal and the Zero. Text data was sent in both 
directions between the two devices, demonstrating the 
capability to communicate with the IOIO serially. However, a 
different option from using the Zero for both wink detection and 
OLED display was used because the Zero was unable to refresh 
the OLED display to show new information at around 2 FPS. 
As a result, all of the functions to power the OLED display and 
communicate with the IOIO serially were moved over to the 
Arduino Micro. This Micro does not have a lot of overhead (it 
is only running one program at a time, as opposed to the Zero 
which runs the whole Linux OS) and runs on C++, which is 
faster than Python. As a result, it was able to achieve our 
requirement to provide for fast OLED display refresh rates of at 
least 2FPS. In addition, it received data from the Android phone 

like music information, text message data, and etc. serially to 
project it onto the display. This was validated by connecting the 
IOIO to the Micro, which was powering the OLED display, and 
visually inspecting that phone data was being printed on the 
screen. 

With the introduction of a new microcontroller, some 
changes had to be made for communication protocols. As 
previously mentioned, the IOIO talks to the Micro serially, 
providing the phone data. The Micro also powers the OLED 
display using hardware Serial Peripheral Interface (SPI), which 
uses the dedicated SPI pins on the board to provide much faster 
data rates than serial transmission. The wink detection, which 
originally sent out the GPIO signals to the IOIO from the Zero, 
now sends that information to the Micro, which also houses a 
finite state machine to control what the user sees in his vision 
and what data to send from the IOIO. The GPIO signals from 
the wink detection drive into the interrupt pins on the Micro, 
which asynchronously interrupt the loop it is running to change 
the menu display and receive different kinds of information 
from the IOIO. A more precise explanation of the 
communication signals is shown in the block diagram (Figure 
1) and denoted later in this section. The finite state machine is 
shown in Figure 4. 

 

 
Figure 4. Finite state machine for control menu housed in the Micro. Blue 
signifies right winks, red signifies left winks 

 
When the user wears the goggles, it will begin by displaying 

the top level menu, beginning with GPS. If the user would like 
to access the GPS, he winks with his left eye, which will bring 
him to a submenu of the GPS showing Longitude, Latitude, 
Speed data. To exit the submenu and return to the top level, the 
user winks left again (hence the bidirectional red arrow between 
the top level and the sub-functions). To traverse laterally 
through the menu, the user winks with his right eye. So from 
the GPS top level menu the user will go to the Text Message 
top level menu. The user can once again enter the Text Message 
menu through a left wink, which will first show information 
about the person who sent the message and what the message 
contents were. If there are multiple sub-functions within a 
menu, the user can right wink to traverse (it is a loop so at the 
end it will revert back to the first sub-function). Again, the user 
can exit at any subfunction to the top level menu by winking 
left. The top level menu is also in a loop, going from the last 
option to the first option (GPS). This menu can be scalable, as 
shown in Figure 4 that all that needs to be implemented are the 
sub-functions and then the top level menu option itself in the 
code. Depending on the state the Micro is in, it will request 
different data by signaling with two different GPIO pins (one 
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for each sub-function) to the IOIO and will receive that 
information through five other GPIO pins (one for each top 
level menu) from the IOIO. Our PCB has a maximum of three 
sub-function pins and six data pins; this can be further scaled 
for more different options and sub-functions by soldering more 
connections between the Micro and the IOIO. 

Finally, we tested for whole product functionality in different 
environments, such as putting it in a refrigerator for 2.5 hours 
and running the code outside where it was at least 25°C. In 
Table 5 we list specifications required for our product. 
 

Table 5 
MICROCONTROLLER REQUIREMENTS 

Requirement Specification Results 
Maintain 
communication 
between Android 
application and OLED 
(support Wink Detector 
and OLED) 

Constant link of 
sending GPIO signals 
and power OLED 
display 

Met through running 
entire system for 4 
hours without 
interruption 

Drive Pi Camera Minimum 2 FPS Met 
Does not overheat Temperature remains 

less than 80 ̊C 
Zero: 53 ̊C 
Micro: 23 ̊C 

Works within 
reasonable temperature 

Operating range -20 C̊ 
to 30 C̊ 

Met by putting both 
microcontrollers in 
refrigerator for ~2.5 
hours 

Low power 
consumption 

<1W Zero: .7W (5V @ 
140mA) 
Micro: .135W (5V @ 
27mA) 

Memory constrained <50% of RAM Zero: ~18-20% Max 
for infinitely running 
code 

Size <80mm x 80mm x 
10mm 

Zero: 66mm x 30.5mm 
x 5mm 
Micro: 48mm x 18mm 
x 5mm 

 
The requirements for this subsystem are shown above in 

Table 5 alongside test results. As shown in the table, the 
temperature requirements, memory constraints, and power 
consumptions have all been met with both the Micro and the 
Zero. More importantly, it is able to run the system and provide 
end-to-end feedback between namely the phone, wink 
detection, and the OLED display through asynchronous 
interaction between these systems. 

E. Mobile Phone Application 

The mobile phone application collects data from the phone 
and sends information through the MCU to display. It will 
receive input commands from the IOIO to adjust the 
information it is displaying or to control the phone. We used 
Android Studio to write the phone application for Android 
devices. The application is currently designed for the Huaiwei 
Honor 5x smartphone, which uses Google Android 5.1 OS [6]. 
The requirements of this subsystem are shown in Table 6. 
 
 
 
 

Table 6 

PHONE APPLICATION REQUIREMENTS 
Requirement 

User friendly interface 
Gathers information from phone sensors 
Sends messages and phone number data 
Able to gather GPS data and calculate the speed 
Allows IOIO to manipulate the phone 
Able to manipulate music 

 
The phone application can currently turn music on and off 

from I/O pin input, displays information from the phone 
sensors, and is accessible to users as seen in Figure 5. 
 

  
Figure 5. Main menu layout for testing (left), HUDware working module 
(right) 

 
The layouts for the application have already been completed. 

We have implemented music, statistical data extraction, and 
part of the message display functionalities. 

The music function allows the user to listen to songs and 
change the song sequence via I/O pins. First, we needed to add 
“MusicService” in “AndroidManifest.xml” which guarantees 
the application permissions it needs to do system level methods. 
We imported .mp3 files into the resource directory, allowing us 
to call music within the application. In the Java class, we 
created a media player to recall those songs. This media player 
can be controlled through GPI/O pins.  

The sensor layout seen above shows the phone’s sensor sets, 
which we are using to display information about our 
surroundings. Using these sensors, we are able to detect light 
intensity, gravity, acceleration, and orientation. With GPS data 
and calculations, we expect to be able to determine speed as 
well. Finally, all these kinds of data have been extracted and 
send out to the MCU through IOIO serial data communication. 

The message display function has been completed. We use 
an Android SMS Message API to help the application show 
messages when they arrive. “Broadcast Receiver” has been 
implemented for monitoring the status of Message service. 
When the message comes in, the sender’s phone number and 
message content will be reserved and then sent out to the MCU 
through IOIO serial data communication. At the beginning, we 
tested message function on virtual device. After it was 
completed, we moved to the real device with an SIM card. 
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The GPS function has been implemented by using Google-
Play-Service. It will return the accurate longitude and latitude 
data once the phone is connected to the Internet and it is under 
GPS function. We are able to get new longitude and latitude by 
configuring time intervals and minimum distance of updating 
the data. In this case, updated longitude and latitude data can be 
used to calculate the distance by using Haversine Formula, as 
shown below in figure 6. The speed can then be calculated using 
distance over minimum time interval. 

 
Figure 6. Haversine Formula 

 
Figure 7 below shows the test circuit used for the application. 

This test circuit includes the IOIO device which will be 
described in more detail later. An external control circuit was 
used to simulate an I/O pin turning on and off. Using this 
system, we could control the phone via external switches. 
 

 
Figure 7. Phone Application, IOIO-OTG Board, and External Control 
Circuit 
 
 

F. IOIO-OTG 

The IOIO-OTG board connects the mobile phone to the 
MCU, namely the Micro. Using a wired USB connection, this 
device allows us to communicate at a fast rate. Usually with a 
mobile device, the phone is default set to slave in the 
master/slave paradigm. This device allows us to swap back and 
forth to fit the needs of the project. This subsystem needs to 
provide stable serial data transmission, read GPIO and analog 
inputs, and write GPIO outputs. 

The Android IOIO-OTG board is a development board that 
uses a PIC microcontroller [7]. It provides two pairs of serial 

data communication, 46 GPIO pins, analog input, SPI, and I2C 
interfaces to handle external hardware. This provides enough 
functionality to handle all the requirements needed from this 
subsystem. 

Table 6 
IOIO PROTOCOLS AND SPEED 

Protocol Throughpu
t 

One-way 
Latency 

Stability 

Open Accessory 600 kB/S 1 ms High 
Android Debugging 
Bridge 

300 kB/S 4 ms Low 

 
Table 6 shows the different speeds for the two protocols 

available on the IOIO. Clearly, the Android Open Accessory 
(AOA) protocol is more attractive. In addition to the speed and 
stability, with AOA we do not need to set the phone in USB 
debugging mode as we do for the Android Debugging Bridge 
(ADB). ADB is commonly used for downloading Android code 
from the desktop. We have implemented the IOIO transmitter 
by importing the IOIO API and the Utility library. The 
transmitter can control each GPIO pin and set them to either 
high or low from the phone application. It sends serial data at 
common baud rates, e.g. 9600, 19200, 38400, and 115200. 

IOIO sends out the serial data through UART. For the input, 
we define two kinds of GPIO pins: state pins and control pin. 
State pins decide the Phone’s functionality, such as Music, 
GPS, Message, and Sensor Data. Each function corresponds to 
one specific pin. Apart from that, we have control pin to enter 
the function or exit the function. For example, if user wants to 
enter the message function and see message information on the 
display. Message function’s state pin will be on first, and then 
control pin will be on then to enter the function and message 
content will be presented on the OLED display. 

Alternative approaches to the IOIO device were considered 
for communicating between the application and the 
microcontroller. These options are shown in Table 7 with their 
respective bandwidth, range, and complexity. Bluetooth offers 
the lowest bandwidth but is straightforward to implement. Wi-
Fi has the highest bandwidth, but would be difficult to 
implement due to protocols. Both Wi-Fi’s and Bluetooth’s data 
transmission can be unstable for dynamic situations like skiing. 
Since wireless connectivity was not necessary, the IOIO device 
proved to be the best option due to its stability and low 
complexity.  

Table 7 
COMMUNICATION LINK DESIGN ALTERNATIVES 

Communication Bandwidt
h 

Range Complexity 

Bluetooth (v4.0) 800 kB/s 30 ft Pairing Devices 
Wi-Fi (802.11n) 11 MB/s 300 ft Accessing Internet 
IOIO-OTG 5 MB/s Wired Configuring Board 

 

G. Display 

The display for this device will be generated by an organic 
light emitting diode (OLED) display that reflects off a 
transparent material. An OLED works by having a series of thin 
organic films between two conductors. By applying current, 
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light is emitted from the device [8]. The device we are using is 
driven by a SSD1351 chip. To provide necessary setup and 
functionality for the display, we are using a library from Github, 
py-guagette_master_2 [9]. Using this library, we can display 
png images as well as text and ASCII characters. 

 
Figure 8. Pepper’s Ghost Diagram 

 
The AR display works on a principle called Pepper’s Ghost 

shown in Figure 8 above [10]. This effect uses two light 
sources, in our case the natural light of the environment and the 
light from the OLED [11]. By placing a film in the green plane, 
some of the light from the OLED will appear to be directly in 
front of the user. This allows us to hide the OLED on the side 
of the goggles outside of the user’s field of view and still create 
a transparent display. For this subsystem, we are using a sheet 
of LEXAN clear acrylic. The optimal angle for this sheet, or 
angle where the user sees total reflection, is 42.2 ̊from the red 
plane [12]. 

 

 
 Figure 9. Virtual Image  
 
For purposes of focusing the image for a general user, we 

added a 10cm focal length BiConvex lens in the optical path. 
This allows us to achieve a focused image within the user’s 
vision. A normal human eye cannot perceive an image that is 
within 25cm of the eye, we needed to create a virtual image that 
appears to be coming from a distance greater than 25cm. With 
our 10cm focal length lens, we are able to achieve an image that 
appears to come from about 40cm away which is sufficient to 
meet the 25cm criteria. 

 
 
 
 
 
 

Table 8 
DISPLAY REQUIREMENTS 

Requirement Specification 
Focused and Legible Display  
Brightness Minimum 90 nits 
Operable at reasonable temperature -20 C̊ – 30 C̊ 
Low power consumption <1W 

 
The requirements for this subsystem are shown above in 

Table 8. This display needs to be bright enough to be legible 
while skiing in the middle of the day and needs to be able to 
work under cold temperatures. Currently we are able to meet 
the specification on brightness although just barely with 91 nits 
as measured from a light meter. 

As previously mentioned, between MDR and FDR a switch 
was made from a Raspberry Pi Zero running the OLED display, 
to an Arduino Micro. This change was done in order to increase 
the refresh rate of the OLED. With the Zero, we were getting 
refresh rate of a frame every 3 seconds (.333FPS), which does 
not make sense to have a refresh rate so low that it does not 
allow for fast enough display of the incoming data. With the 
Micro, we are able to achieve a much faster refresh rate of 
roughly at least 2FPS. 

A few different design alternatives were considered for this 
display. Texas Instruments has a Pico projector chipset that 
would have fit the requirements of the projector well, but the 
chipset itself was difficult to assemble due to their format as 
ball grid arrays. A transparent OLED was also considered, as it 
would provide the light required without needing a reflective 
film, but these proved impossible to procure. Given the 
complexity and ease of manipulation, an opaque OLED was 
chosen for the display. 

 

H. Power System 

The power system will support the HUDware device for its 
outdoor setting. This system will need to supply power to the 
IOIO and MCU, and by extension, the camera and OLED. This 
subsystem will supply enough power and energy to run the 
device for four hours. Table 9 shows the power drain for each 
system. 

Table 9 
POWER BUDGET 

Device Current Draw 
Zero 140mA 
Micro 27mA 
OLED 0.4mA 
IOIO 60mA  
Total 227mA 

 
We decided to use an external phone battery to power the 

device. This provides 2200mAh which will prove more than 
enough to reach our goal of four hours of battery life [13]. It is 
worth noting that the battery is not located within the casing as 
previously intended, but is instead attached by a USB cable and 
designed to rest in the pocket with the user’s phone. 
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III. PROJECT MANAGEMENT 

Table 10 
MDR GOALS 

Goal Specification Achieved 
Projector Display Assembled Prototype Prism Constructed Yes 
 OLED Display Setup Yes 
Application Layout Partial Functionality Yes 
Wink Detector Wink Detection Algorithm Yes 
 Moved into microcontroller Yes 
MCU communication setup Serial to MCU Yes 
 Serial from MCU Yes 

 
Table 10 lists the goals our team aimed to accomplish by the 

midway design review presentation date. Each subsystem had 
separate objectives for the MDR presentation. The projector 
display needed to have a basic system in place so that an image 
was visible to the user. This was not intended to be a final 
configuration so much as a proof of concept. To this end, a 
makeshift prototype was created that showed the OLED display 
image across the field of view of the user. Further work in this 
subsystem includes optimizing reflection, finalizing OLED 
placement, and converting text data into a display that can be 
shown to the user. While there is plenty of work to be done in 
this area, the display has been created to the point specified at 
the preliminary design review. 

The mobile phone application subsystem has all required 
functions and it is integrated with other subsystems. At the time 
of the presentation, it would take in sensor data, GPS data, 
speed data, and message content from the phone itself and 
display the information on the OLED Display. Sensor data is 
extracted from phone’s own sensors. Message information 
includes both sender’s phone number and the content of 
message. Speed data is calculated from the Haversine formula 
based on the time interval and the changed distance. Apart from 
that, Music function is able to skip the song and restart back to 
the first song. It is controlled through microcontroller’s control 
signals. 

There were two milestones in the wink detector subsystem. 
The first was a functional algorithm that would detect if one eye 
was closed in a picture of the user’s face. The second portion of 
this subsystem was moving it from a computer into the Zero. 
Currently, both milestones have been reached and there is a 
functional wink detector inside of the MCU. In order to 
complete these tasks, the wink detector code first was designed 
on a computer. For ease of use, this was done in MATLAB. An 
equivalent program was developed in Python so that the 
microcontroller would able to run the code. Finally, this had to 
be imported into the microcontroller which involved calibration 
and importing the correct libraries. Like the mobile phone 
application and the IOIO device, the camera sensor subsystem 
falls closely in line with the functionality of the wink detector. 
Although no deliverables were specified, the camera is 
currently able to take a picture of both eyes from a distance that 
would fit comfortably within the goggles. Further work in both 
subsystems would include calibrating the wink detector, 
improving the speed of the whole algorithm, testing the system 
to ensure requirements have been met, and permanently fixing 
the camera to the prototype attachment. 

Since MDR, the wink detector was moved from the 
Raspberry Pi B+ to the Zero. In addition, filters and calibration 
were added to improve accuracy of the live stream. The overall 
latency of the algorithm was drastically reduced thanks to a 
change in the handling of the video stream.  

While there are several components to the microcontroller 
subsystem, for the MDR presentation date, we specified that we 
would have communication to and from the MCU. As 
promised, we sent serial data from the microcontroller to a 
desktop computer and from the computer to the 
microcontroller, just using two different MCUs. This past 
semester, the Micro became the dedicated MCU to drive the 
OLED display, while the Zero ran the wink detection algorithm. 
Otherwise, the overall system is still able to send information 
bi-directionally; it is just through a slightly different way for the 
reasons explained earlier in the MCU section of the report. 

In the past semester, two new subsystems were incorporated 
into the overall design; the power system and the casing. The 
power system is driven by an external phone battery which rests 
outside of the main casing. This supplies enough energy to 
power the system for 9.69 hours. The power is connected 
directly to the Zero which in turn supplies it to the IOIO, phone, 
Micro, OLED display, and the Pi Camera. The casing was 
designed in a 3D modeling software and printed out in two 
parts. Each part was designed to hold the three components of 
the OLED display subsystem as well as the PCB. After printing, 
the pi camera was attached using sheets of plastic, and a foam 
cushion added to line the perimeter of the headset. Tabs on both 
the top and bottom halves allowed the casing to be connected 
with screws and nuts. 

Since we have complex system, including one Arduino 
Micro, one Raspberry Pi Zero, IOIO Communication Board, 
and OLED display, and all these things have to be fitted into the 
Casing prototype, which has limited space. We decided to 
design our Printed Circuit Board (PCB) with Altium Circuit 
Maker to reduce the complexity of wiring. The PCB was sent 
to Advanced Circuits for fabrication. When the board is 
received, it was soldered with male and female header pins. 
After finishing soldering, ground continuity was checked 
before plugging in the components. The PCB was then placed 
in the goggles. 

The team worked well together. For the first semester, most 
of the work was done with individual subsystems, requiring 
each member to work independently. While the bulk of the 
work was done individually, when a team member had 
difficulty achieving a goal, other team members stepped in to 
assist. Most commonly, this duty fell to Lee, whose subsystem 
impacted everyone’s, putting him in the unique position of 
being involved slightly in every subsystem. The second 
semester work required each of the subsystems to join together. 
This required significantly more communication, but we met 
this challenge head on. The team has been able to communicate 
with each other through both a group messaging platform as 
well as weekly meetings. The group meets once a week as a 
team to work on current action items, and again later in the 
week to discuss progress and goals with our faculty advisor. 
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This allowed us to achieve our goals for the project and resulted 
in a functioning prototype. 

 

 
Figure 10: Schedule for the first semester 

 
Figure 10 demonstrates the goals that we have set for the fall 

semester, with the deadline of the midway design review. This 
chart was created early in the project and understandably 
represents somewhat different goals than what we decided to 
pursue. For instance, the original design includes Bluetooth 
connectivity, a feature we decided to scrap in favor of a wired 
USB Connection. Some of the work we anticipated being able 
to achieve was not accomplished, such as scheduling on the 
microcontroller and any work on the power system. These were 
conscious decisions aided by the advice of our evaluators to 
focus our attention on more important priorities.  

 
 

 
Figure 11: Revised schedule for second semester 

 
Figure 11 is the proposed schedule for the second semester. 

This aimed to have all tasks completed by CDR. Unfortunately, 
this proved erroneously optimistic. While a prototype was 
developed by CDR, it has been drastically reworked since that 
presentation to improve ergonomics, display quality, and 
control accuracy. By FDR and Demo Day, all tasks were 
completed, all subsystems combined, and a functioning 
HUDware was displayed. 

IV. CONCLUSION 

HUDware has been completed and will function as we 
planned at the beginning of the project. All the various 
subsystems have been combined and communicate together to 
form a cohesive heads-up-display. That being said, there is 
room for improvement in many of the subsystems to improve 
clarity, ease of use, and quality increases. In addition to simply 
improving the quality of HUDware, we as a group would like 
to encourage future work on the project to include finding new 
applications to a portable display. We selected a skiing 
application due to personal familiarity with the sport, but we 
would love to see another group take this project in a new 
direction.  
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